SymBio lab

Hi, my name is Teeraphan Laomettachit. I am an associate professor of systems biology at Bioinformatics & Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), THAILAND.

I'm also affiliated with the Theoretical and Computational Physics (TCP) Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT.

Research

Systems biomedicine

We use integrative approaches (math modeling, machine learning, structural modeling) to understand the complexity of diseases.

Network biology

We construct and analyze biological networks (e.g., protein/gene regulatory networks), and seek insight into complex biological systems.

Collective behavior

Using honeybee colonies as a model system, we study how simple interactions between individuals give rise to complex macroscopic behaviors such as collective decision-making and social immunity.

News

26 Mar 2024
We combined deep learning and structural modeling to identify possible acetylcholinesterase (AChE) inhibitors from Hericium erinaceus (lion’s mane mushroom). The research article has been published in ACS Omega (link to publication).

20 Mar 2024
Congratulations to Thanyawee Srithanyarat on her MSc graduation with a publication in Biodata Mining (link to publication).

6 Mar 2024
Lab journal club on circadian rhythms and medicine

23 Feb 2024
Our lab has published two publications:
1. Srithanyarat, T., Taoma, K., Sutthibutpong, T., Ruengjitchatchawalya, M., Liangruksa, M., Laomettachit, T.* (2024). Interpreting drug synergy in breast cancer with deep learning using target-protein inhibition profiles. BioData Mining, 17(8), 1–17. https://doi.org/10.1186/s13040-024-00359-z
2. Taoma, K., Ruengjitchatchawalya, M., Liangruksa, M., Laomettachit, T.* (2024). Boolean modeling of breast cancer signaling pathways uncovers mechanisms of drug synergy. PLOS ONE 19(2): e0298788. https://doi.org/10.1371/journal.pone.0298788

Publications

2024

24) Sutthibutpong, T.*, Posansee, K., Liangruksa, M., Termsaithong, T., Piyayotai, S., Phitsuwan, P., Saparpakorn, P., Hannongbua, S., Laomettachit, T.* (2024). Combining deep learning and structural modeling to identify potential acetylcholinesterase inhibitors from Hericium erinaceus. ACS Omega, In press, https://doi.org/10.1021/acsomega.3c10459

23) Srithanyarat, T., Taoma, K., Sutthibutpong, T., Ruengjitchatchawalya, M., Liangruksa, M.*, Laomettachit, T.* (2024). Interpreting drug synergy in breast cancer with deep learning using target-protein inhibition profiles. BioData Mining, 17(8), 1–17. https://doi.org/10.1186/s13040-024-00359-z

22) Taoma, K., Ruengjitchatchawalya, M., Liangruksa, M.*, Laomettachit, T.* (2024). Boolean modeling of breast cancer signaling pathways uncovers mechanisms of drug synergy. PLOS ONE 19(2): e0298788. https://doi.org/10.1371/journal.pone.0298788

21) Soommat, P., Raethong, N., Ruengsang, R., Thananusak, R., Laomettachit, T., Laoteng, K., Saithong, T.*, Vongsangnak, W.* (2024). Light-exposed metabolic responses of Cordyceps militaris through transcriptome-integrated genome-scale modeling. Biology, 13(139), 1–13. https://doi.org/10.3390/biology13030139

2023

20) Posansee, K., Liangruksa, M., Termsaithong, T., Saparpakorn, P., Hannongbua, S., Laomettachit, T.*, Sutthibutpong, T.* (2023). Combined deep learning and molecular modeling techniques on the virtual screening of new mTOR inhibitors from the Thai mushroom database. ACS Omega, 8(41), 38373–38385.

2022

19) Laomettachit, T.*, Kraikivski, P., Tyson, J. J.* (2022). A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle. Scientific Reports, 12(1), 20302.

18) Anuntakarun, S., Lertampaiporn, S., Laomettachit, T., Wattanapornprom, W., Ruengjitchatchawalya, M.* (2022). mSRFR: a machine learning model using microalgal signature features for ncRNA classification. BioData Mining, 15(1), 1-11.

17) In-On, A., Thananusak, R., Ruengjitchatchawalya, M., Vongsangnak, W., Laomettachit, T.* (2022). Construction of light-responsive gene regulatory network for growth, development and secondary metabolite production in Cordyceps militaris. Biology, 11(1), 71.

2021

16) Kaewlin, N., Liangruksa, M., Laomettachit, T.* (2021). Development of a genetically integrated PBPK model for predicting uric acid homeostasis in humans. Thai Journal of Mathematics, 19(3), 971-980.

15) Liangruksa, M.*, Laomettachit, T., Siriwong, C. (2021). Enhancing gas sensing properties of novel palladium-decorated zinc oxide surface: a first-principles study. Materials Research Express, 8(4), 045004.

14) Sangphukieo, A., Laomettachit, T., Ruengjitchatchawalya, M.* (2021). PhotoModPlus: A web server for photosynthetic protein prediction from genome neighborhood features. PLOSE ONE, 16(3): e0248682.

13) Laomettachit, T.*, Liangruksa, M., Termsaithong, T., Tangthanawatsakul, A., Duangphakdee, O. (2021). A Model of infection in honeybee colonies with social immunity. PLOS ONE, 16(2), e0247294.

2020

12) Sukpol, W., Laomettachit, T., Tangthanawatsakul, A.* (2020). A mathematical model of stochastic phase transitions in breast cancer development. Solid State Technology, 63(3), 873-880.

11) Sangphukieo, A., Laomettachit, T., Ruengjitchatchawalya, M.* (2020). Photosynthetic protein classification using genome neighborhood-based machine learning feature. Scientific Reports, 10:7108. https://doi.org/10.1038/s41598-020-64053-w

2019

10) Tyson, JJ.*, Laomettachit, T., Kraikivski P. (2019). Modeling the dynamic behavior of biochemical regulatory networks. Journal of Theoretical Biology, 462: 514–527. link

2017

9) Laomettachit T, Puri IK, Liangruksa M.* (2017) A Two-step Model of TiO2 nanoparticle toxicity in human liver tissue. Toxicology and Applied Pharmacology, 334: 47–54. link

8) Liangruksa, M.*, Laomettachit, T., Wongwises, S. (2017) Theoretical study of DNA's deformation and instability subjected to mechanical stress. International Journal of Mechanical Sciences, 130:324-330. link

2016

7) Laomettachit, T.*, Termsaithong T, Sae-Tang A, Duangphakdee O (2016). Stop-signaling reduces split decisions without impairing accuracy in the honeybee nest-site selection process. Journal of Insect Behavior, 29: 557-577. link

6) Laomettachit, T., Chen, KC., Baumann, WT., Tyson, JJ.* (2016). A model of yeast cell-cycle regulation based on a standard component modeling strategy for protein regulatory networks. PLOS ONE, 11:5, e0153738. link

2015

5) Kraikivski, P., Chen, KC., Laomettachit, T., Murali, TM., Tyson, JJ.* (2015). From START to FINISH: Computational analysis of cell cycle control in budding yeast. npj Systems Biology and Applications. 1:15016. link

4) Sangphukieo, A., Nawae, W., Laomettachit, T., Supasitthimethee, U., Ruengjitchatchawalya, M.* (2015). Computational design of hypothetical new peptides based on a cyclotide scaffold as HIV gp120 inhibitor. PLOS ONE, 10:10, e0139562. link

3) Laomettachit T*, Termsaithong T, Sae-Tang A, Duangphakdee O (2015). Decision-making in honeybee swarms based on quality and distance information of candidate nest sites. Journal of Theoretical Biology, 364: 21-30. link

2014

2) Oguz, C., Palmisano, A., Laomettachit, T., Watson, LT., Baumann, WT., Tyson, JJ.* (2014). A Stochastic model correctly predicts changes in budding yeast cell cycle dynamics upon periodic expression of CLN2. PLOS ONE, 9(5): e96726. link

2013

1) Oguz, C., Laomettachit, T., Chen, KC., Watson, LT., Baumann, WT., Tyson, JJ.* (2013). Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model. BMC systems biology, 7: 53. link